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Bipartite Structure of the Proximal Promoter 
of a Human H4 Histone Gene 
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Abstract The proximal promoter of the human H4 histone gene F0108 contains two regions of in vivo 
protein-DNA interaction, Sites I and I I .  Electrophoretic mobility shift assays using a radiolabeled DNA probe revealed 
that several proteins present in HeLa cell nuclear extracts bound specifically to Site I (nt-I25 to nt-86). The most 
prominent complex, designated HiNF-C, and a complex of greater mobility, HiNF-C’, were specifically compatable by 
an Spl consensus oligonucleotide. Fractionation of HiNF-C using wheat germ agglutinin affinity chromatography 
suggested that, like Spl , HiNF-C contains N-acetylglucosamine moieties. Two minor complexes of even greater 
mobility, designated HiNF-E and F, were compatable by ATF consensus oligonucleotides. A DNA probe carrying a 
site-specific mutation in the distal portion of Site I failed to bind HiNF-E, indicating that this protein associated 
specifically to this region. UV cross-linking analysis showed that several proteins of different molecular weights interact 
specifically with Site I. These data indicate that Site I possesses a bipartite structure and that multiple proteins present in 
HeLa cell nuclear extracts interact specifically with Site I sequences. o 1995 WiIey-Liss, Inc. 
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Complex arrays of protein/DNA interaction 
sites are involved in the transcriptional regula- 
tion of genes involved in cell growth (reviewed in 
reference 1). To elucidate the pathways of regu- 
lation that support growth control, we have 
analyzed transcriptional mechanisms regulat- 
ing a cell cycle controlled human H4 histone 
gene. Human histone genes constitute a moder- 
ately repeated, multi-gene family which encode 
five histone subtypes critical for the packaging 
of newly replicated DNA into chromatin (2-4). 
The human genes are organized in clusters of 
core (H2A, H2B, H3, H4) or core with H1 his- 
tone genes (5-10) and have been identified on at 
least two different chromosomes (11,121. The 
majority of histone genes is expressed in a cell 
cycle regulated manner, tightly coupled both 
temporally and functionally to DNA replication 
(13,141. 
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Cell cycle dependent histone genes are tran- 
scribed at a basal level and exhibit a 2-5-fold 
induction of transcription during the initial pe- 
riod of DNA synthesis (15-17). This induction 
of transcription is accompanied by a disruption 
of the chromatin structure and nucleosome orga- 
nization in the promoter region (18,19). Histone 
mRNA accumulates rapidly during S-phase to a 
level 20-100-fold higher than that detected in 
non S-phase cells (15-17,20-22). These results 
demonstrate that both transcriptional and post- 
transcriptional control mechanisms are critical 
in regulating the cell cycle dependent expression 
of histone genes. 

Transcription of the cell cycle regulated F0108 
human H4 histone gene has been shown to be 
modulated by both proximal and distal pro- 
moter elements (17,231, and the promoter of 
this gene supports cell growth regulated tran- 
scription in transgenic mice (24). Our labora- 
tory has previously shown that the proximal 
promoter consists of two regions of in vivo pro- 
tein-DNA interaction, Sites I and I1 (25). Site I1 
is located between -64 and -24 bp upstream 
from the transcription initiation site and con- 
tains the TATA box and an H4 histone specific 
element (5‘-RGTYYTCAAYYNGGTCCG-3’). Oc- 
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cupancy of Site I1 in vivo and in vitro has been 
correlated with rendering the gene transcrib- 
able in proliferating cells (24,26-30). Further- 
more, Site I1 sequences are involved in the regu- 
lation of histone gene transcription during the 
cell cycle (31). 

The F0108 H4 histone promoter Site I is 
positioned at -124 to -86 bp upstream of the 
initiation site. In this study, we begin to charac- 
terize the protein/DNA interactions which oc- 
cur at Site I. We report that Site I possesses a 
bipartite structure, binding specifically to sev- 
eral distinct nuclear proteins. 

MATERIALS AND METHODS 
Preparation of Nuclear Extracts 

Nuclear extracts were prepared from 1 x 109 
exponentially growing HeLa S3 cells essentially 
as described by Dignam et al. (321, except 2 ml of 
600 mM KC1 was used to extract the nuclei. All 
steps were performed at 4°C and all buffers 
except the phosphate buffered saline contained 
fresh 0.5 mM phenylmethylsulfonyl fluoride 
(PMSF), 0.5 mM dithiothreitol (DTT), and 5 
kg/ml each of pepstatin A, antipain, leupeptin, 
and chymostatin (Sigma Chemical Co., St. Louis, 
MO). 

Gel Mobility Shift Analysis 

The gel mobility shift analysis was performed 
essentially as described by Staudt et al. (33) 
using a TGE buffer system (50 mM Tris-HC1, 
380 mM glycine, 2 mM EDTA, pH 8.5). Binding 
reactions were as described previously (311, ex- 
cept that the Site I probe extended from - 156 to 
-72 bp (plus 14 bp of pUC19 polylinker) and 
poly(d1-dClpoly(d1-dC) (3 pg) was used as the 
non-specific competitor. The specific oligonucleo- 
tide competitor for distal Site I has been de- 
scribed previously (29) and the ATF oligonucleo- 
tides were the generous gift of Dr. Michael Green 
(34-35). The H3 histone distal site I1 oligonucleo- 
tide (H3-DSII) has been described previously 
(36). 

Site-Directed Mutagenesis 

Selected base substitutions were introduced 
into the promoter of the H4 histone gene by 
oligonucleotide-directed mutagenesis without 
phenotypic selection, essentially as described by 
Kunkel (37). Single-stranded M13 DNA carry- 
ing the 1.85 kB EcoRI/HindIII fragment of 
F0108 and containing uracil was prepared by 

amplification in the Escherichia coli strain 
CJ236 (dut- ung- F) (a gift of Dr. Barbara 
Bachmann, E. coli Genetic Stock Center, Yale 
University, New Haven, CT). Mutations were 
introduced in complementary synthetic oligo- 
nucleotides containing the base substitutions in 
either distal Site I, 5’-GAGGAMACAGAAAA- 
GAcATcACtAAATGTCGAG-3’, or proximal Site 
I, 5‘CGAGAGttCGGGGAC-3’. The mutations 
were recovered by transfection into wild type E. 
coli strain XL1-Blue (Stratagene, La Jolla, CA), 
confirmed by enzymatic sequencing (Se- 
quenasem, U.S. Biochemical Corp., Cleveland, 
OH), and the 1.85 kB EcoRI/HindIII histone 
gene containing fragment was cloned back into 
puc19. 

DNase I Protection 

DNase I footprinting was performed as de- 
scribed by Augereau and Chambon (38) and 
used the same Site I and mutant probes as used 
in the gel mobility shift assay. The relative affin- 
ity of the factors for the binding sites was as- 
sessed by determining the degree of change in 
the intensity of the footprint protection as mea- 
sured by densitometry. 

Wheat Germ Agglutinin Affinity Chromatography 

Wheat germ agglutinin affinity chromoatogra- 
phy was carried out essentially as described (39) 
using HeLa cell nuclear extracts. 

UV-Cross Linking of Site I Proteins 

linking was performed as described (40). 
Molecular mass determination by U V  cross- 

RESULTS 

The F0108 human H4 histone gene proximal 
promoter consists of two regions of protein- 
DNA interaction in vivo, Sites I (-124 to -86 
bp; Fig. 1) and I1 (-64 to -24 bp). To begin to 
understand the molecular mechanisms by which 
Site I influences transcription, we initiated the 
characterization of the protein/DNA interac- 
tions which occur at this sequence in vitro. 

We first examined the interactions at  Site I by 
DNase I footprint analysis (Fig. 2). Nuclear pro- 
teins incubated with the Site I probe protected a 
region of 36 bp (-122 to -87 bp). These results 
match the boundaries of this protein/DNA inter- 
action region determined in vivo (25) (Fig. 2). As 
observed previously (251, this protected region 
contains both ATF (distal) and Spl (proximal) 
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Fig. 1. Schematic of the Site I domain. Dark lines indicate the extent of the in vivo DNase I footprint and 
filled circles denote the methylation protected guanine residues. Brackets define the in vitro DNase I 
footprints of HiNF-E and HiNF-C determined in the absence of binding by the other factor. Filled boxes 
designate the ATF and Spl consensus recognition sequence. The base substitutions in Mutation 1 and 
Mutation 2 are indicated below, at the bottom of the figure. 

Fig. 2. DNase I footprint of Site I proteins. Amounts of nuclear protein extract (pg) present in the reaction 
are shown above each lane. The probe used, either wild-type or mutant (mutant for the distal ATF site), is 
shown at the top of the figure. Boundaries of the footprints are indicated along the sides. 

consensus sequences. A mutation designed to dis- 
rupt the ATF-like binding site was created (from 

ber of histone gene promoters contain potential 
ATF binding sites (Fig. 3). 

5’AATGACG3’ to 5’CATCACT3; see below). This 
mutation resulted in a reduced footprint (- 108 to 

- - 

Distinct Binding Events Occur at Site I 

-87 bp), indicating that a protein(;) binds to the 
distal portion of the wild-type sequence. A search of 
the published gene sequences revealed that a num- 

To address the mechanisms by which Site I 
contributes to transcription, we studied the num- 
ber and types of protein/DNA interactions that 
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-121  -107 

Human H4 F0108:  "GAAATGACGAAATGTC3' 

-170 -155 

Human H 4  H4/h: 'TTGGTGACGTCATCCA3 ' 

-198 -183 

Human H3 ST519: IkAAATG ACGTCAGAG? 

-157 -142 

Human H3 FF435: ' CGGGTGACGTCACAGC" 

-106 -9 1 

Human H2B: 5'CCTCTGACGTTACCCT3' 

Fig. 3. Comparison of ATF binding sequences found in the 
promoter region of several human histone genes. The under- 
lines delineate the ATF consensus sequences. The histone H4 
F0108 sequence is from reference 25; the H4/h sequence is 
from reference 47 (D. Doenecke, unpublished data); the H3 
ST519 sequence is from references 43 and 44; the H3 FF435 
sequence from Charles Stewart (unpublished data); and the 
H2B sequence from reference 47. 

occur at this site in vitro by employing the gel 
mobility shift assay. A radioactive DNA probe 
(- 156 to - 72 bp) spanning Site I was incubated 
with the same nuclear protein preparations from 
HeLa cells used in the DNase I footprinting 
studies. This probe formed protein-DNA com- 
plexes that resulted in several prominent shifted 
bands in TGE gels (Fig. 4A). The specific interac- 
tions in each complex were further defined by 
DNA binding site competition with synthetic 
oligonucleotides (Fig. 4B). An oligonucleotide 
representing the distal half of Site I (-125 to 
-101 bp), which was used at  a 500-fold molar 
excess over the probe, eliminated the two lower 
complexes, designated HiNF-E and F, and par- 
tially reduced the intensity of the upper promi- 
nent complex, HiNF-C + E (Fig. 4B, lane 2). In 
addition, we examined whether either a consen- 
sus ATF recognition sequence or a natural ATF 
binding site from the adenovirus E4a promoter 
would compete for the Site I interactions. Both 
ATF recognition sites displayed competition pat- 
terns similar to that of the distal Site I oligo- 
nucleotide when a 500-fold molar excess was 
used (Fig. 4B, lanes 3 and 4). An unrelated 
oligonucleotide was unable to compete specifi- 
cally for any of the bands at these concentra- 
tions (lane 5). These results suggest that HiNF-E 
and F interact specifically with ATF consensus 
sequences. Competition of both HiNF-E and F 
by the ATF consensus oligonucleotide suggests 

that these complexes contain ATF-like factors. 
The factors designated as HiNF-C and C' were 
not competed by any of these ATF consensus 
oligonucleotides, but were compatable by an Sp-1 
consensus dimer oligonucleotide (lane 6). 

Distal ATF-like Site Is Required for Binding 

We defined the binding site requirements of 
protein/DNA interactions at  Site I by site- 
directed base substitution analysis. Previously, 
we had identified by in vivo genomic sequencing 
(25)  and in vitro dimethylsulfate (DMS) finger- 
printing (29) a series of highly specific protein1 
guanine residue contact points at  Site I. These 
contacts are arranged into two groups, one in 
the proximal half over the region of similarity to 
the Spl consensus recognition site and the other 
in the distal half within the consensus ATF 
recognition sequence, and were used to guide 
the construction of the site-directed mutation of 
the distal region. 

The mutation (described above) alters the two 
guanine contacts in the distal half of Site I as 
well as one adjacent nucleotide and disrupts the 
ATF binding site consensus core, 5'-TGACG-3'. 
Examination of the protein-DNA interactions 
formed with this mutant probe revealed that the 
complex designated HiNF-E was diminished by 
the mutation (Fig. 4C). The F complex was not 
affected by this mutation, suggesting that this 
complex may represent a distinct, and perhaps 
non-specific interaction with the site. The bind- 
ing of factors HiNF-C and C' was also not af- 
fected by the mutation (Fig. 4C). 

Partial Purification of HiNF-C 

Since the binding of HiNF-C was specifically 
decreased by both Spl  consensus oligonucleo- 
tide competition (Fig. 4B) and by mutation of 
the G-rich sequence located in the proximal 
portion of Site I (4C), we postulated that HiNF-C 
might be related to Spl  itself. Spl  is known to 
characteristically bind to a wheat germ aggluti- 
nin affinity matrix because of covalently at- 
tached N-acetylglucosamine (GlcNAc) moieties 
(39). When a HeLa cell nuclear extract was 
passed over this matrix, electrophoretic mobility 
shift analysis of fractions using the Site I probe 
revealed that, like Spl,  HiNF-C displayed bind- 
ing behavior indicative of the presence of GlcNAc 
(data not shown). 

UV Cross-linking of Site I Proteins 

In order to further analyze the protein/DNA 
interactions at Site I, we estimated the molecu- 
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Fig. 4. Gel mobility shift analysis of the Site I protein-DNA 
interactions. A A radiolabeled Site I probe (-156 to -72 bp 
plus 14 bp of pUC19 polylinker) was incubated with increasing 
concentrations (0.5 to 8 kg) of HeLa nuclear extract and 
resolved on a polyacrylamide gel as described (see Materials 
and Methods). The arrowheads to the right of the figure repre- 
sent the proteiniDNA complexes observed reproducibly. B: 
Oligonucleotide competition of the Site I protein-DNA com- 
plexes. Gel mobility shift analysis of the Site I probe incubated 
with 4 p,g of HeLa nuclear extract and 500-fold molar excess of 
specific oligonucleotides. Lanes: 1, no competitor; 2, distal Site 

lar mass of the contributing proteins by U V  
cross-linking with a bromodeoxyuridine-contain- 
ing Site I probe. In addition, because the UV 
cross-linking procedure results in stabilization 
of DNA binding proteins to their cognate se- 
quence, this method potentially facilitates detec- 
tion of short-lived protein/DNA interactions that 
would not be detectable in gel mobility shift 
assays or DNase I footprint analysis. The results 
shown in Figure 5 indicate that three proteins of 
approximately 61, 91, and 95 kDa are specifi- 
cally cross-linked to Site I. Other bands of ap- 
proximately 43-45 kDa are also detected after 
60 min of UV treatment. All of the bands de- 
tected were dependent on the addition of nuclear 
factors and UV irradiation and could be elimi- 
nated by digestion with Proteinase K (Fig. 5). 
Competition with the distal Site I oligonucleo- 
tide specifically eliminated the 61, 92, and 95 
kDa bands described above, but only minimally 
decreased the signal of non-specific bands in the 

I (DS-I); 3, consensus ATF (CATX3) (42); 4, ATF site from the E4 
promoter (pE427X1) (41 ); 5, non-specific oligonucleotide from 
the histone H3 promoter (H3-Sll); 6, Spl consensus dimer. C:  
Effect of specific base substitutions on the Site I protein-DNA 
interactions. Gel mobility shift analysis of Site I probes (-1 56 to 
-72 bp plus 14 bp of pUC19 polylinker) containing either the 
wild type sequence (wt) or mutated (distal ATF site mutant 
shown) as described in Materials and Methods. Each probe was 
incubated with three concentrations of HeLa nuclear extract (4, 
6,8 kg). Complexes have been designated HiNF-C + E, HiNF-C, 
HiNF-C’, HiNF-E, and HiNF-F. 

43-45 kDa range. A large excess of an unrelated 
oligonucleotide generally lowered the signal but 
did not specifically abolish any of the bands. 
These competition results suggest that multiple 
proteins are capable of specifically interacting 
with Site I. Our UV cross-linking experiments 
using bromodeoxyuridine failed to demonstrate 
the binding of specific proteins to Site I that 
were cornpatable by the Spl  consensus oligo- 
nucleotide (data not shown). Identical results 
were obtained with a Site I cross-linking probe 
containing a non-functional HiNF-C binding site 
(data not shown). This result, that no Spl-like 
proteins were cross-linked to the Site I probe, is 
not surprising since it is likely due to the lack of 
nucleotides within the HiNF-C binding site that 
can be substituted with bromodeoxyuridine. 

DISCUSSION 

The F0108 human H4 histone gene contains 
two regions of in vivo protein-DNA contact, 
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Fig. 5.  Molecular weight determination of Site I proteins using UV cross-linking analysis. UV cross- 
linking to Site I was performed with BrdU-substituted, uniformly labeled Site I DNA probes (-1 56 to -72 
bp plus 14 bp of pUC19 polylinker). After DNase I digestion, the samples were resolved on a 10% 
SDS-polyacrylamide gel and autoradiographed. Length of UV treatment is indicated above each lane. 
Specific competitor, DS-1; nonspecific competitor, H3-DSII; prot K indicates sample was digested with 
proteinase K prior to electrophoresis. The major cross-linked protein is indicated by an arrowhead in the 
right margin. 

Sites I and 11, located within the first 200 bp 
upstream of the transcription initiation site (25). 
Several Site I1 binding factors have been de- 
scribed previously (see reference 17). The re- 
sults presented in this report contribute to the 
understanding of this histone gene proximal 
promoter by describing the bipartite structure 
of Site I. 

Electrophoretic mobility shift analysis of un- 
fractionated (Fig. 4) or wheat germ agglutinin 
affinity matrix-purified nuclear proteins (data 
not shown) suggest that the proximal factor, 
HiNF-C, might be related to the transcription 
factor Spl. Indeed, antibody supershift studies 
confirm that HiNF-C is Spl (41). Further analy- 
sis of Site I both in vitro and in vivo demon- 
strates conclusively that the proximal portion of 
Site I functions as an Spl  site which is essential 
for the maximal expression of this histone gene 
(41). 

The binding site found in the distal portion of 
Site I contains a sequence with strong similarity 
to the ATF consensus recognition element, 5'- 
GTGACGTE-3' (42). While no other vertebrate 

histone gene promoter has been described to 
bind ATF, similar sequences are found in sev- 
eral other histone gene promoters (see Fig. 3). 
Notably, the ST519 human H3 histone gene 
promoter contains an ATF consensus sequence 
element that is involved in protein-DNA interac- 
tions both in vivo and in vitro (43,441. Addition- 
ally, Tabata et al. have identified ATF-related 
factors that bind the promoter of a wheat H3 
histone gene (45,46). Therefore, ATFs may play 
an important role in orchestrating the coordi- 
nated expression of several different histone 
genes. Mobility shift studies using the entire 
F0108 Site I sequence show that the binding of 
one protein complex is effectively reduced by 
mutation of the ATF consensus core sequence 
present in Site I and is specifically competed by 
ATF consensus oligonucleotides (Fig. 4C). When 
the assay was optimized for the detection of 
ATF family members using a probe encompass- 
ing only the distal portion of the site, we ob- 
served that several ATF-related proteins either 
in the HeLa nuclear extract, or in recombinant 
form, bound specifically to this region (41). Tran- 
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sient expression studies in HeLa cells indicate 
that the mutation of this asymmetric ATF bind- 
ing site causes a significant decrease in reporter 
activity only in the absence of the proximal Spl 
site (41). Therefore, we postulate that while Spl  
plays a dominant role in bringing about the 
maximal expression of the histone H4 F0108 
gene, ATFs probably perform some auxiliary 
role in the process. How these proteins might 
interact with the other components of the proxi- 
mal promoter of this gene is currently under 
examination. 
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